Prof. Dr. B. Rosenow
Assem Afanah

Quantum Physics of Nanostructures - Problem Set 3

Winter term 2022/2023

Due date: The problem set will be discussed Wednesday, 7.12.2022, 15:15-16:45, Room 114.

6. Quantum Spin Hall Effect

Given the 6-terminal setup shown in Fig. 1, your task will be to determine the Hall resistance R_{H} and the longitudinal resistance R of a system featuring the so-called quantum spin Hall effect. The charge transport in this particular state of matter, which was realized in specifically designed $\mathrm{CdTe} / \mathrm{HgTe}$ quantum wells $[1,2]$, is due to one-dimensional edge states. The edge transport is analogous to the edge transport in the Quantum Hall effect, but occurs without an applied external magnetic field.
Assume there is no backscattering for the electrons propagating in the one-dimensional edge channels connecting the various voltage probes (terminals). Determine $R_{H} \equiv$ $R_{14,26}=\left(V_{2}-V_{6}\right) /\left(I_{1}\right), R_{1} \equiv R_{14,23}=\left(V_{2}-V_{3}\right) /\left(I_{1}\right)$ and $R_{2} \equiv R_{13,54}=\left(V_{5}-V_{4}\right) /\left(I_{1}\right)$ from the Landauer-Büttiker formula for a multi-terminal system,

$$
I_{i}=\sum_{j} G_{i j}\left(V_{i}-V_{j}\right)
$$

where $i, j=1, \ldots, 6$ and I_{i} denotes the current at terminal i, V_{i} is the voltage at terminal i, and $G_{i j}$ is the conductance

Abbildung 1: In the quantum spin Hall effect, charge transport is due to one-dimensional channels propagating along the sample edges. The spin of the electrons is tied to their motion: left moving (red) and right moving (blue) electrons have opposite spin polarization. The edge channels connect neighboring terminals. relating current I_{i} to the voltage difference $V_{i}-V_{j}$. The conductances are given by the transmissions $T_{i j}$ from terminal j to terminal i taking into account all relevant edge channels times e^{2} / h, i.e., $G_{i j}=\frac{e^{2}}{h} T_{i j}$. Proceed as follows:
(a) Determine the conductance matrix $G_{i j}$ in the absence of backscattering. Take $G_{i j}=0$ if terminals i and j are not connected by an edge channel according to Fig. 1.
(b) Find the coefficient matrix $M_{i j}$ that relates the current vector I_{i} to the voltage vector V_{i}, $I_{i}=\sum_{j} M_{i j} V_{j}$.
(c) Solve for the voltages, assuming that $I_{2}=I_{3}=0$ and $I_{5}=I_{6}=0$, as appropriate for measuring the voltage drops $V_{2}-V_{3}$, and $V_{2}-V_{6}$, and determine R_{H} and R_{1}. Modify the above computation appropriately to determine R_{2}.

Hint: Note that the equations specified by $M_{i j}$ are not independent due to Kirchhoff rules. Use the freedom to fix e.g. $V_{4}=0$ to drop the fourth row and column from $M_{i j}$ to arrive at an invertible 5×5 coefficient matrix.
[1] M. König et al., Science 318 5851, 766-770 (2007).
[2] A. Roth et al., Science 325 5938, 294-297 (2009).

7. Byers-Yang theorem and gauge transformation $2+3+3+2$ Points

The Byers-Yang theorem states that all physical properties of a doubly connected system enclosing a magnetic flux Φ are periodic in the flux with period of flux quantum $\Phi_{0}=h / e$. Consider the setup illustrated in the figure below, where an electron moves around an impenetrable cylinder(solenoid) with radius a. The magnetic field inside the cylinder is $\boldsymbol{B}=B \hat{z}$ with total flux Φ, while the electron moves in a region with $\boldsymbol{B}=\nabla \times \boldsymbol{A}=0$.
(a) The magnetic vector potential outside the cylinder may be obtained using a line integral of the vector potential along a closed contour

$$
\Phi=\oint_{C} \boldsymbol{A} \cdot d \boldsymbol{l}
$$

with the line element $d \boldsymbol{l}=d r \hat{r}+r d \phi \hat{\phi}+d z \hat{z}$ in cylindrical coordintes. By using a circle as contour, show that the vector potential in the region outside the cylinder is given by $\boldsymbol{A}=\Phi / 2 \pi r \hat{\phi}$.
(b) The time-independent Schrödinger equation of an electron moving in a region with vector potential \boldsymbol{A} is given by $\boldsymbol{H} \psi=E \psi$ with Hamiltonian

$$
H=\left[\frac{1}{2 m}(\boldsymbol{p}-e \boldsymbol{A})^{2}\right],
$$

where $\boldsymbol{p}=-i \hbar \nabla$ is the canonical momentum. Apply the gauge transformation

$$
\boldsymbol{A} \rightarrow \boldsymbol{A}^{\prime}=\boldsymbol{A}+\nabla \chi, \quad \psi \rightarrow \psi^{\prime}=\exp \left(i \frac{e}{\hbar} \chi\right) \psi
$$

and show that $\boldsymbol{H}^{\prime} \psi^{\prime}=E \psi^{\prime}$ is indeed equivalent to $\boldsymbol{H} \psi=E \psi$.
(c) Using the explicit form of the vector potential given above, construct a gauge transformation such that $\nabla \chi=-\boldsymbol{A}$. What is the benefit of this transformation? For which values of the flux Φ is the wave function ψ^{\prime} single-valued?
(d) Find a general expression for a gauge transformation χ which removes the effect of a given vector potential, and study under which conditions the new wave function is single valued. Using such a gauge transformation, provide an argument for the validity of the Byers-Yang theorem.

